# Updating aperture

Schelkunoff's zero-placement method, Fourier series design method with windowing, sector beam array design, Woodward-Lawson frequency-sampling design, discretization of continuous line sources, narrow-beam low-sidelobe designs, binomial arrays, Dolph-Chebyshev arrays, Taylor one-parameter source, prolate arrays, Taylor n-bar distribution, Villeneuve arrays, multi-beam arrays, emphasis on the connections to DSP methods of digital filter design and spectral analysis of sinusoids.

Hallen and Pocklington integral equations, delta-gap, frill generators, and plane-wave sources, solving Hallen's equation, sinusoidal current approximation, reflecting and center-loaded receiving antennas, King's three-term approximation, evaluation of the exact kernel using elliptic functions, method of moments, pulse, triangular, NEC, and delta-function bases, Hallen's equation for arbitrary incident field, solving Pocklington's equation.

Currents and charges as sources of fields, retarded potentials, fields of a linear wire antenna, near and far fields of electric and magnetic dipoles, Ewald-Oseen extinction theorem of molecular optics, radiation fields, radiation field approximation, computing the radiation fields, radiation vector.

Energy flux and radiation intensity from a radiating system, directivity, gain, and beamwidth of an antenna, effective area, gain-beamwidth product, antenna equivalent circuits, effective length and polarization and load mismatches, communicating antennas, Friis formula, antenna noise temperature, system noise temperature, limits on bit rates, satellite links, radar equation.

Communication and computer network engineers routinely use waveguiding systems, such as transmission lines and optical fibers.

Novel recent developments in materials, such as photonic bandgap structures, omnidirectional dielectric mirrors, birefringent multilayer films, surface plasmons, negative-index metamaterials, slow and fast light, promise a revolution in the control and manipulation of light and other applications.

Fourier optics concepts, Fresnel approximation, Talbot effect, Fourier transformation properties of lenses, one- and two-dimensional apodizer design and aperture synthesis for narrow beamwidths and low sidelobes including Fourier-Bessel and Dini series expansions, realization of apodizers using star-shaped masks, coronagraphs and starshade occulters, superresolving apertures, overview of superdirectivity, superresolution, and superoscillation concepts based on prolate spheroidal wavefunctions.

Open-ended waveguides, horn antennas, horn radiation fields, horn directivity, optimum horn design, microstrip antennas, parabolic reflector antennas, gain and beamwidth of reflector antennas, aperture-field and current-distribution methods, radiation patterns of reflector antennas, dual-reflector antennas, lens antennas.

General properties of TEM transmission lines, parallel-plate, microstrip, coaxial, and two-wire lines, distributed circuit model of a transmission line, wave impedance and reflection response, two-port equivalent circuits, terminated lines, power transfer from generator to load, open- and short-circuited lines, Thevenin and Norton equivalent circuits, standing wave ratio, determination of unknown load impedance, Smith chart. Coupled transmission lines, even-odd mode decomposition for identical matched or unmatched lines, crosstalk between lines, weakly coupled lines with arbitrary terminations, coupled-mode theory, co-directional couplers, fiber Bragg gratings as examples of contra-directional couplers, quarter-wave phase-shifted fiber Bragg gratings as narrow-band transmission filters, and the Schuster-Kubelka-Munk theory of diffuse reflection and transmission as an example of contra-directional coupling.

Similarly, antenna array design is related to the problem of spectral analysis of sinusoids and to digital filter design, and Butler beams are equivalent to the FFT. Review of Maxwell's equations, Lorentz force, constitutive relations, boundary conditions, charge and energy conservation, Poynting's theorem, simple models of dielectrics, conductors, and plasmas, relaxation time in conductors.

Please note that the book is now completed and, except for corrections, the August 1, 2016 revision will be the last one. Individual chapters are available below in PDF in 2-up format. Uniform plane waves in lossless media, monochromatic waves, wave impedance, polarization, waves in lossy media, waves in weakly lossy dielectrics, propagation in good conductors, propagation in oblique directions, complex waves, propagation in negative-index media, Doppler effect.

Multilayer dielectric structures at oblique incidence, lossy multilayers, frustrated total internal reflection, surface plasmon resonance, perfect lenses in negative-index media, antireflection coatings at oblique incidence, omnidirectional dielectric mirrors, polarizing beam splitters, reflection and refraction in birefringent media, Brewster and critical angles in birefringent media, multilayer birefringent structures, giant birefringent optics.

Longitudinal-transverse decompositions of Maxwell's equations, power transfer and attenuation in guiding systems, TEM, TE, TM modes, rectangular waveguides, higher TE and TM modes, operating bandwidth, power transfer, energy density, and group velocity in waveguides, power attenuation, reflection model of waveguide propagation, dielectric slab guides.